
JOURNAL OF COMPUTATIONAL PHYSICS 64, 320-333 (1986) 

On the Solution of Poisson’s Equation 
on a Regular Hexagonal Grid Using FFT Methods 

W. M. PICKERING 

Department of Applied and Computational Mathematics, 
The University, Sheffield SIO ZTN, England 

Received August 16, 1984; revised May 15, 1985 

An FFT method for solving the discrete Poisson equation on a rectangle using a regular 
hexagonal grid is described and the results obtained for a model Dirichlet problem are com- 
pared with those obtained on a rectangular grid. For a given grid size the results demonstrate 
that the hexagonal method is more accurate, but rather less efficient, than the usual S-point 
method, whereas for comparable accuracy to be achieved by both methods, the hexagonal 
method was found to be approximately 20 to 30 times faster than the 5-point method for the 
model problem. !C? 1986 Academic Press, Inc 

1. INTRODUCTION 

Fast, direct methods for solving a certain class of linear partial differential 
equations are well established and there is a considerable literature on the subject. 
For example, Hackney [ 1,2], Buzbee et al. [3], Swartztrauber [4], and Temper- 
ton [5, 63 describe the methods of Fourier analysis and cyclic reduction as applied 
to the discrete (two-dimensional) Poisson equation on a rectangle, Le Bail [7] 
gives a detailed classification of equations which may be solved by FFT methods, 
and Houstis and Papatheodorou [S] derived a 9-point FFT method for the 
Heimholtz equation and provide detailed comparisons with the results obtained 
from other algorithms. Wilhelmson and Ericksen [9] consider FFT methods for 
the three-dimensional Poisson equation. 

The main purpose of the present paper is to describe an FFT method which may 
be used to solve the discrete Poisson equation on a rectangle with a grid consisting 
of regular hexagons, each of which is divided into six equilateral triangles. Com- 
putational results are presented for a model Dirichlet problem for various grid sizes 
and these results are compared with those obtained on rectangular grids. 

2. THE FINITE DIFFERENCE EQUATIONS 

With indices i and j defined as indicated in Fig. 1, the usual finite difference 
approximation (see, for example, Allen [lo] ) to Poisson’s equation 

v*@%, Y) = 4(x, Y), 
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FIG. 1. The region of integration and fmite difference molecule. 

on a mesh consisting of equilateral triangles of side h, may be written 

-6~i,j+~i,J~2+~i,j+2+~i+l,j+1+~i-~,j+1 

+@ t+ I,j- 1 + @i- I,,- 1 = Q,j+ O(h6) 

(i = 1, 2,..., n; j = 1, 2 )...) J), 

where 

l+l,J+l 

1+1,1-1 

(2) 

(3) 

and we shall assume that n is odd and J is even. 
For j even and odd we define, respectively, the vectors $j and vj by 

where #j has m = (n + 1)/2 components, and vj has m - 1 components. Hence, for j 
even, we find that 

(5) 
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where 
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B= 

lo...0 
llO..O 
Oil... 
. . . ’ 0 
0 . . 0 1 1 
O...Ol 

(6) 

mx(m-1) 

ri* =‘j- (CO,,j- 1 + @O,j+ 1, O O,~n+I,j~l+~~,+1,,+1)~, )... (7) 

rj= (Ql,j, Q3,jy..*> Qn,j)‘, (8) 

and, for j odd, 

-6~j+Yrj-*+Vlj+2+BT(~jiI+~j+I)=s,’ (9) 

where 

Sj= (Q*,j, Q+j,..., Qn- l,jJT. (10) 

The terms Qj,,j,,, @n+l,jfl which appear in Eq. (7) are known boundary values. 
We may eliminate the vectors vi, vi& ,, vjk2 from Eqs. (5) and (9) as follows. 

For j odd we have from (5) that 

-6~ji,+~j-_,+~j+.,+B(yrj~2+Wj)=ri*-1 (11) 

-6~j+.++j-1+~j+.3+B(Wj+\Yj+*)=r,*,,, (12) 

and hence vi + 2 may be eliminated by multiplying (9) by B and subtracting (11) 
and (12), giving 

-8Byr,-~ji3-~j+,3+(BBT+5z,)(~j+1+~j-_1)=Rj, (13) 

where I,,, is the unit matrix of order m and 

Rj=Bsj-r,*_,-r,*,,. (14) 

Relation (13) may thus be employed in (5) to produce, for j even ( 22, J), the 
equation 

‘(H,-‘5~~)~j+((H,+‘6~~)(~j-,+~j+,)-~ji-4-~j+f4=Rj*, (15) 

where 

R~=8r,*+Rj-I+Rj+1, (16) 
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and 

H,,,=BBT-4I,,,= 

-3 1 0 
1 -2 1 
0 1 -2 

0 . 0 
0 . . 

(17) 

For j = 4 Eq. ( 15) contains $,, , a vector of known boundary values, which may be 
taken to the right-hand side, and similarly for j = J - 2 the term $J + 2 is known. For 
j = 2, J a special procedure was employed to derive finite difference equations which 
have the same order truncation error as (15) and incorporate the boundary con- 
ditions on j= 0, J+ 2. This procedure is explained for the particular case j= 2. 
Essentially, w r, We, and \yS may be eliminated by using Eq. (5) for j= 2,4 and 
Eq. (9) for j = 1, 3, but we note that, for j = 1, Eq. (9) involves the “fictitious” w-, 
which may be obtained as follows. 

Figure 2 shows the grid near the boundary for i even. Using Taylor series it is 
easy to derive the relation 

where Qi, -, denotes a fictitious value of @ and @i,O denotes a known boundary 
value of @. Thus, assuming that (1) is satisfied at (i, 0) and using the relation 
V4@ = V’q, we may show that to O(h6) 

v-1 = -\v1+ y/(O), 

where q~ (‘) is a known vector whose components are given by 

(19) 

'\ /' 

'Y' 
j=-1 

FIG. 2. The grid near the boundary j = 0. 
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It is clear that the case j = J may be treated similarly and for the problem con- 
sidered in Section 4, w(O) and @‘+ *) may be calculated from analytic formulae. For 
other problems it may be necessary to evaluate these vectors approximately and the 
configuration of the grid allows the use of suitable difference formulae for the 
derivatives in (20) to enable v(O) and similarly N#~+~) to be evaluated with leading 
error term 0(Zz6). 

Thus the complete system of equations may be written as 

(3% - 2%) $2 + (& + 161,) b-+6 

= 6(rT)I - $o) - r: + B(s, + s3 - BTajo - ty”‘) 

(ff, + 16Zm) $2 + 2(H, - 151,) 44 + W, + 161,) $6 -4s 

=R:+40 

-~j-_,+(H,+l6Z,)~,-2+2(H,-15Z,)~,+(H,+l6Z,)~i+2-~,+, 
=R,* (j=6, 8 ,..., J-4), (21) 

-~5--6+(H,+16Z,)bJ-4+2(H,-15Z,)95-2+(H,+16Z,)$J 

=RS-2+4.,+2, 

Equations (21) have a quindiagonal block structure of J/2 blocks in which each 
non-null mth-order block is either -I,,, or a linear function of the tridiagonal 
matrix H,. It is perhaps worth remarking here that if the $;s rather than the v;s 
are eliminated, the resulting equations corresponding to (21) have a similar block 
structure but the tridiagonal blocks are linear functions of the matrix R,- 1 = 

- BTB - 41, _ 1, where 

Rm-,= 

-2 1 0 . . 0’ 

l-2 10 . 0 
0 . . . . . 

0 
0 . . 0 1 -2 1 
0 . . 0 1 -2 

(22) 

As is well known, this matrix arises naturally in the FFT method for the 
Dirichlet problem for the Spoint discrete Poisson equation on a rectangular grid, 
whereas the matrix (17) differs from those usually encountered in problems which 
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may be solved by the FFT method. As there appears to be no particular advantage 
in either formulation, we present here the details for the FFT method based on 
Eq. (21). 

The eigenvalues and corresponding eigenvectors of H, are easily shown to be 
given by 

A,= -2+2cosa,, 

and 

x.=(sin~o,,sin~..,...,sin(v+~)~~,...,sin(m-~)rr,)T 

(s = 1, 2 )...) m), (23) 

respectively, where c(, = sz/m, and the eigenvectors satisfy the relations 

x;xs = 0, r #s, 
= m/2, r=s#m, 

=m, r=s=m. 

Thus defining 

(24) 

R:* = 6(r: - $*) - rf + B(S, + s3 - B’$* - I,,‘*‘) 

R;*=R:+bo 

R?*=R* 
J J (j = 6, 8,..., J- 4) (25) 

RSf,=Rf-,+4,+, 

and setting 

and (26) 

R,** = f d,,jx, 
s=l 

5X I 64 ‘2-4 
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so that ds,j = xTR,+*/(x,I *, the systems of equations for the coefficients c,,~ take the 
quindiagonal form 

(1, + 16) Cs,2 + 2(&- 15) Cs.4 + (1, + 16) c,,6 - c,,8 = 4.4 

-c,j-4+(~,+16)C,j-2+2(~,-15)C,j+(~,+16)c,,+2-c,j+4=d~,j 

(j = 6, 8,..., J- 4) (27) 

-c,,J-6+(;ls+16)c,,~-4 +2(&-15)c,J-,+(~,+16)cs,,=ds,J-, 

-C,,J-4+ (&+ 16) cs,J-2+ @k-w Cs,~=ds,J, 

where s = 1, 2,..., m. In the usual manner, once the coefficients have been determined 
from (27), +j may be synthesised using (26) and an algorithm which efficiently 
implements the necessary Fourier analysis and synthesis is given in the Appendix. 
The solution for j= 1, 3, 5 ,..., J+ 1 may be recovered, if required, by solving the 
equations 

-7W,+W~=S,-BT(~,+$2)-W’o’ 

Wj-2-6Vj+Vj+z =Sj-BT(+j-l++j+l) (j= 3, 5,..., J- 1) (28) 

~J-1-7~J+1=sJ+l-BT(db+~J+2)-~(J+2), 

which immediately decouple into m - 1 tridiagonal systems each of order J/2 + 1, 
for the components $I”), k = 1, 2 ,..., m - 1, j = 1, 3, 5 ,..., J + 1. 

Before describing the computational procedure some further comments are 
relevant. In principle it is possible to perform cyclic reduction on Eqs. (21) but the 
eliminated equations have a block tridiagonal structure which require the use of the 
FFT method or further cyclic reductions for their solution. It is likely that a 
method consisting of a combination of quindiagonal and tridiagonal cyclic reduc- 
tion procedures and FFT would produce an optimised algorithm for solving 
Eqs. (21), in the manner of the usual FACR(I) method for the 5-point 
approximation (Swartztrauber [4], Temperton [S, 61). The reduction in execution 
time achieved by using this algorithm compared with using Fourier analysis or 
cyclic reduction alone is typically lO-60%. For the hexagonal grid method this 
approach requires some further study, particularly as cyclic reduction may be used 
for both the quindiagonal systems and the eliminated tridiagonal equations. In the 
present paper we concentrate on solving Eqs. (21) by the direct application of the 
FFT method as already described, although we note also that the method can be 
readily adapted to problems for which the domain is periodic in the j-direction. For 
this case the equations corresponding to (21) may be written in the form 
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No+ V~*-4b -+J-2+ V+,=R$ 

wo + w, + v4, - $6 -g,=R; 

-4j-2+ v+j-2+ u+j+ k+j+2-+j+4 =R,Y 

(j = 4, 6,..., J - 4) 

-40 -QJ--6+ V$J-4+ U$J-2+ V-$,=R;-, 

MO - $2 -$Jp4+ V4,p,+U+,=Rf, 

where U= 2(Hm - 151,) and V= H, + 161,. 

(29) 

3. COMPUTATIONAL PROCEDURE 

We consider solving Eq. (1) over the region shown in Fig. 1 with 0 < x < 1, 
O<y<l/~f or a sequence of grid sizes defined by the parameters 

n = 2? - 1, (30) 

where y is an integer ( >4), 

m = gn + 1) 

J=n-1 

and (31) 

It is convenient to work with two arrays QE(iO, j,) and QO(ie, j,) for which the 
corresponding grid point coordinates are defined by 

x0 = (i. - 4) h,,‘? (i, = 1, 2,..., m) 

ye =j,h (j, = 0, 1, 2 ,..., J/2 + 1 ), 
(32) 

and 

x, = i, hfi 

yo=(jo-;)h 

(i,=O, 1, 2 ,..., m) 

(j, = 1, 2,..., J/2 + 1) 
(33) 

and the overall computational procedure is generally similar to that for the usual 
FFT method on a rectangular grid with one level of cyclic reduction. 

The vectors $0, cbJ+ 2 of known boundary values are stored in appropriate 
elements of the array QE and the right-hand sides of (21) are calculated and stored 
in QE. The array QO is used to store the vectors si - w(O), si, j= 3,..., J- 1, and 
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sJ+l -w (J+2) which appear in (28). The right-hand sides of (27) are calculated 
using Fourier analysis and the m sets of quindiagonal systems (27) are solved using 
a Gaussian elimination algorithm (see, for example, von Rosenberg [ll]) and the 
final solution, for j even, is obtained in the array QE by Fourier synthesis using 
(26). The solution for j odd may then be obtained in the array QO by solving 
Eqs. (28). 

4. RESULT AND DISCUSSION 

For the actual computations we chose 

q(X, y) = (x2 + y’) exy (34) 

for which the analytical solution to ( 1) is 

@(x, y) = ex-” (35) 

and appropriate boundary values were computed using (35). Values of the 
maximum modulus error and RMS errors (obtained by comparison with (35)) are 
shown in Table I for values of y in the range 4<y < 7, together with the 
corresponding execution times. These times were calculated by running the 
program typically 100-200 times for 4 Q y < 6 and 20-50 times for y = 7 and include 
the time taken to solve (28). The program (Program I) was written in Fortran 77 
and run on a Prime 9950 machine with approximately 13 decimal digit precision. 

For the purposes of comparison a second program (Program II) was written to 
solve the same equation (using the FFT method) over the rectangular region 
O<x<l, O<y<l/fi using the usual 5-point approximation with step-lengths 
h, = l/(N+ l), h, = h&,fi, w h ere N = 2y ~ ’ - 1. This choice of grid implies that, for 
a given value of y, the work involved in Fourier analysis and synthesis is 
approximately the same for this method as for the hexagonal grid calculation since 
the usual form of sine transform was used (Cooley et al. [12]). Furthermore, both 
Programs I and II used a real periodic FFT algorithm based on the Cooley-Tukey 

TABLE I 

Values of Maximum Modulus Error, RMS Error, and Execution Times 
for the Solution of Poisson’s Equation on a Regular Hexagonal Grid 

Maximum modulus Execution 
Y M 51-7 error RMS error time (set) 

4 8 I 3.1, -8 1.8, -8 0.057 
S 16 1s 1.9, -9 1.0, -9 0.25 
6 32 31 1.2, -10 6.1, -11 0.75 
I 64 63 1.5, -11 1.9, -12 2.77 
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TABLE II 

Values of Maximum Modulus Error, RMS Error, and Execution Times 
for the Solution of Poisson’s Equation Using the Usual 5-Point Approximation 

Y 
Maximum modulus Execution 

N error RMS error time (set) 

4 I 5.1, -6 2.1, -6 0.037 
5 15 1.4, -6 6.6, -7 0.13 
6 31 3.4, -7 1.6, -1 0.46 
7 63 8.6, -8 3.9, -8 1.74 

algorithm [13] and Table II shows the results obtained for the 5-point 
approximation. 

In order to gain some insight into the efficiency of these programs compared with 
those of other authors a Fortran version of POT1 (Christiansen and Hackney 
[14]) was run on the Prime 9950 under the same operating conditions. The values 
for the maximum modulus error and RMS error using POT1 were found to be 
identical with those shown in Table II and the execution times are given in 
Table III. That these times are generally similar to those given in Table II for 
corresponding values of N is not surprising since POT1 requires approximately half 
the number of Fourier transforms of Program II but takes about twice as long as 
Program II to evaluate the sine transform. Overall the results indicate that POT1 is 
rather more efficient than Program II. 

It is clear that the execution times shown in Tables II and III are smaller than the 
corresponding values shown in Table I, although as y increases the relative dif- 
ference between corresponding times decreases. These results are probably a con- 
sequence of the complexity of the calculation of the right-hand sides of (21) and the 
fact that these equations are quindiagonal rather than tridiagonal. Furthermore, as 
y increases we would expect the major part of the execution time to be spent on the 
Fourier analysis and synthesis, which, for both Programs I and II, is roughly com- 

TABLE III 

Execution Times For POT1 on the Prime 9950” 

N 

7 
15 
31 
63 

Execution 
time (set) 

0.026 
0.093 
0.35 
1.35 

u The values of maximum modulus error and 
RMS error are as given in Table II. 
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parable for the same value of y, and our results tend to confirm that this is the case. 
As indicated earlier, the times shown in Table I include the solution for j odd 
(Eqs. (28)) and if this were omitted it was found that, for example, for y = 7 the 
execution time was reduced by approximately 11% of the value shown. 

The values of the maximum modulus error and RMS error shown in Table I are 
all substantially less than the corresponding values shown in Table II. Moreover, 
the fact that the hexagonal grid approximation is O(h4) is clearly demonstrated by 
the reduction of errors by a factor of approximately 16 between consecutive values 
of y for 4 < y < 6 (in the case y = 7 the solution accuracy is near machine precision) 
whereas Table II demonstrates the 0(/i*) nature of the 5-point approximation. 
Rather than comparing error values in Tables I and II for the same value of y, it is 
perhaps more realistic to compare entries in Table I for y = y. with entries in 
Table II for y = y. + 1, since then h, N 0.9/z. Thus we find that, for example, for 
y. = 4 the RMS error for the hexagonal grid calculation is approximately 37 times 
smaller than that for the S-point method, whereas, for y. = 6, the corresponding fac- 
tor is approximately 640. It is worth pointing out here that all the values of the 
maximum modulus error and RMS error given in Table II are larger than those in 
Table I, irrespective of the value of y. Thus, for example, comparing the case y = 4 
in Table I with y = 7 in Table II, we see that for our model problem, roughly com- 
parable accuracy is achieved by both methods and that, on this basis, the 
hexagonal method is faster than the 5-point method (Program II) by a factor of 
approximately 30. A similar comparison using the POT1 times for the 5-point 
calculations gives a factor of almost 24 and thus it is clear that the hexagonal grid 
method can offer a considerable advantage in terms of speed for a given accuracy 
over the usual 5-point method. 

This type of advantage for higher-order methods has been confirmed for more 
general elliptic equations by, for example, Houstis et al. [8, 151 and Manohar and 
Stephenson [16]. In particular, the method considered in [8] is a fourth-order 
(Cartesian grid) FFT method for the Helmholtz equation. These authors considered 
eight test problems and compared their results with those obtained from several fast 
direct methods and concluded that their method is much superior to second-order 
methods on the basis of speed for comparable accuracy. Averaging over seven of 
the test problems chosen they found their 9-point method to be a factor of 51 times 
faster than the best 5-point methods with the individual factors for three of the 
problems being in the range 19 to 27, approximately, and a further three in the 
range 7&108. A factor of 7 was obtained for a problem which has a singularity in 
the third derivative. 

5. CONCLUSIONS 

We have shown that it is possible to solve Poisson’s equation on a regular 
hexagonal grid using FFT techniques. The results for the test problem considered 
here demonstrate that the method is more accurate than the 5-point method for a 
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given step size and also that, for the two methods to give solutions of comparable 
accuracy, the hexagonal solver is faster than methods based on the 5-point formula 
by a factor of between 20 and 30 approximately. 

These results are in general accord with those found by other workers using high- 
order Cartesian grid methods. 

APPENDIX 

We describe here an efficient procedure for the evaluation of the Fourier analysis 
and synthesis required in Eqs. (26). We consider the inverse discrete Fourier trans- 
form (IDFT) 

z= f Bsx,, (Al) 
s=l 

where x, denotes an eigenvector given by (23) and z is an m-component vector. 
Denoting by zk the kth component of z we have that 

zk= f j?,sin (2k- l)z (k = 1, 2,..., m) 
s=l 

(A21 

and using (24), the corresponding discrete Fourier transform (DFT) is given by 

/I, = f kf!l zk sin ““(22k,- ’ ) (s = 1, 2,..., m - 1) 

and 

By defining 

8, = m/W (s = 1, 2,..., m - 1) 

B, = m/L 

Eqs. (A3) may be written in the form 

(s = 1, 2,..., m) 

(A3) 

(A41 

(A9 

and we note that this relation is the same as that given by Swartztrauber [4] 
(his Eq. (3.17)) for the IDFT which is required in the solution of the 
Dirichlet-Neumann problem for Poisson’s equation in a rectangle using the usual 
5-point approximation. 
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Thus, following Swartztrauber’s procedure, we may deduce that 

m/2-I 

=zl+ C 
2snk 2snk 

k=l 
(z2k+l-~2k)co~~+(z2k+~+z2k)sin~ 1 

+(-1)9+‘z,, (A6) 

and clearly this relation has the form of the real periodic inverse transform, that is, 
Eq. (A6) is of the form 

2snk 2snk 
g2k cos -+ g2k+ 1 sin- 

m m 

+; &rz(-1)” (s = 1, 2 ,..., m), 
L 

where 

g,=2z, 
g2k=Z2k+I-Z2k 

k = 1, 2,..., m/2 - 1 (A8) 

g,= -22,. 

Thus, given the values zk, k = I,2 ,..., m, we use (A8) to construct gk, k = 1, 2 ,..., m, 
and perform the real inverse transform (A7) (of length m) to obtain g,, s = 
1,2,..., m. From (A6) we may show that fls may be determined from 

and the required DFT (the values of 8,) is obtained from relations (A4). The IDFT 
(Eqs. (A2)) may be calculated essentially by reversing the above procedure. Using 
relations (A4) one may calculate 2, from the first of relations (A6) and hence per- 
form a real periodic DFT on this data to produce g, , gz,..., g,. Equations (A8) are 
then easily solved for the required zk, k = 1, 2,..., m. 
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